INAF - Istituto Nazionale di Astrofisica

Osservatorio Astrofisico di Catania

Visite e Divulgazione

Transito di Mercurio sul disco solare (9 Maggio 2016)

Il 9 Maggio 2016 è stato possibile osservare il Mercurio proiettato sul disco solare, un fenomeno piuttosto raro (13 o 14 eventi in un secolo) che si era verificato per l'ultima volta l'8 Novembre 2006. Un simile evento, detto "passaggio" o "transito", può aver luogo solo per i due "pianeti interni" (Venere e Mercurio) quando il pianeta, nel suo moto di rivoluzione, si pone esattamente tra la Terra e il Sole. Durante un transito il pianeta appare come un piccolo disco scuro in lento movimento sul brillante disco solare. Il transito del 9 Maggio 2016 è stato visibile a Catania dall'inizio (13:12 ora locale), fino al tramonto del Sole.  L'Osservatorio Astrofisico di Catania ha organizzato l'osservazione pubblica del transito con la barra equatoriale della sede "A. Riccò". Il programma prevedeva la conferenza "Il transito di Mercurio sul disco solare" e osservazioni in luce bianca e con un filtro "H-alpha" (Galleria fotografica del transito e filmati). L'iniziativa ha riscosso un ottimo successo, con oltre 200 visitatori. I prossimi due transiti di Mercurio avranno luogo l'8 Novembre 2019 e il 13 Novembre 2032.

Altre informazioni: Descrizione dei transiti - Importanza storica dei transiti: la misura dell'Unità Astronomica - I transiti e la ricerca dei pianeti extrasolari

Galleria Fotografica

Hanno collaborato alla realizzazione dell'iniziativa:

Pierfrancesco Costa, Giuseppe Cutispoto, Salvatore Guglielmino, Piero Massimino, Mariarita Murabito, Paolo Romano

Galleria fotografica del transito e filmati

Descrizione dei transiti

Nel Sistema Solare solo Mercurio e Venere, detti anche "pianeti interni", si trovano più vicini al Sole della Terra. Questi due corpi possono essere osservati, seppur per breve tempo, proiettati sul disco solare. Un simile fenomeno, detto "transito", è simile a un'eclisse di Sole (ovvero al passaggio della Luna di fronte al Sole). Tuttavia, mentre le dimensioni apparenti della Luna e del Sole sono quasi identiche (1), il che rende le eclissi di Sole dei fenomeni estremamente spettacolari, le dimensioni apparenti di Mercurio e Venere risultano assai più piccole. Venere ha un diametro apparente di circa 1' (ovvero 1/60 di grado) e risulta appena visibile a occhio nudo. Mercurio ha un diametro apparente di circa 10" (ovvero 1/360 di grado), ed è osservabile solo con l'ausilio di un telescopio

Attenzione: l'osservazione diretta del Sole con telescopi e/o binocoli è sempre estremamente pericolosa. Si consiglia di proiettare il Sole su uno schermo, oppure, nel caso di osservazione diretta, si ricorda che è assolutamente necessario che gli strumenti utilizzati siano equipaggiati con gli appositi filtri solari

(1) Il raggio della Luna (r) è di 1738 km, la sua distanza media dalla Terra (d) è di 384.400 km; la dimensione apparente media della Luna (a = 2 arctang r/d) risulta pari a 31' (circa mezzo grado). Il raggio del Sole (R) è di 695.000 km, la sua distanza media dalla Terra (D) è di 149.597.870 km; la dimensione apparente media del Sole (b = 2 arctang R/D)  risulta pari a 32'. Visti dalla Terra il Sole e la Luna, pur avendo dimensioni reali assai diverse, risultano quindi avere dimensioni apparenti simili.

Se l'orbita dei pianeti interni e della Terra giacessero sullo stesso piano i transiti sarebbero fenomeni piuttosto comuni. Ad esempio nel caso di Venere osserveremmo un transito ogni 1,6 anni, che è il tempo che intercorre tra due allineamenti successivi Terra-Venere-Sole. Invece, a causa dell'inclinazione tra i piani delle orbite di Venere e della Terra (pari a 3°23'35"), nella maggior parte degli allineamenti Venere non risulta proiettata sul disco solare. Per osservare un transito occorre che l'allineamento avvenga lungo la "linea dei nodi", ovvero la linea di intersezione tra le orbite di Venere e della Terra

Per quanto sopra il transito di Venere è un fenomeno assai raro, che si verifica solo 5 volte in 243 anni, con una cadenza piuttosto bizzarra. All'inizio di un "ciclo" si hanno infatti due fenomeni separati da 8 anni, ma poi bisognerà aspettare 121,5 anni per averne un terzo, poi altri 8 anni per un quarto, mentre un quinto fenomeno si verificherà dopo altri 105,5 anni. Il transito di Venere sul disco solare fu previsto per la prima volta da Keplero per il 6 Dicembre del 1631, ma poichè ebbe luogo quando in gran parte dell'Europa  il  Sole  era  già tramontato non risulta che sia stato osservato. Successivamente si sono avuti i transiti del Dicembre 1639 (8 anni dopo il precedente e il primo a essere osservato), del Giugno 1761 (121,5 anni dopo), del Giugno 1769 (8 anni dopo), del Dicembre 1874 (105,5 anni dopo, completando un ciclo di 243 anni) e del Dicembre 1882. I due transiti di Venere più recenti hanno avuto luogo l'8 Giugno del 2004 e il 6 Giugno del 2012. Bisognerà attendere altri 105,5 anni (11 Dicembre 2117) per osservare un altro transito di Venere. Per molti anni i transiti di Venere sono stati il metodo più preciso per calcolare l'Unità& Astronomica, ovvero il semiasse maggiore dell'orbita della Terra. I transiti di Mercurio sono più frequenti di quelli di Venere, ma anch'essi piuttosto rari (13 o 14 eventi in un secolo). A causa della sua maggiore distanza dalla Terra, i transiti di Mercurio sono difficilmente utilizzabili per il calcolo dell'Unità Astronomica.

Importanza storica dei transiti: misura dell'Unità Astronomica

Gli astronomi sono interessati ai transiti di Venere perchè permettono di misurare con ottima precisione il semiasse maggiore dell'orbita della Terra (l'Unità Astronomica = UA), dalla quale si può poi ricavare, applicando la terza legge di Keplero, la distanza dal Sole di tutti gli altri pianeti (2). Una precisa conoscenza dell'UA è inoltre la base di partenza fondamentale per una corretta valutazione della distanza dei corpi esterni al Sistema Solare (quali le stelle e le galassie). Se due osservatori (A e B) misurano la posizione di Venere sul disco solare durante un transito (Figura 1) vedranno il pianeta percorrere traiettorie diverse. L'osservatore A vedrà Venere muoversi lungo la corda "a", mentre l'osservatore B lo vedrà muoversi lungo la corda "b". Quindi a uno stesso istante Venere apparirà sul disco del Sole nel punto "K" per l'osservatore A e nel punto "Z" per l'osservatore B. Dalla differenza di posizione è possibile ricavare la distanza del Sole, come venne accuratamente descritto da E. Halley nel 1716 (alcuni dettagli della misura dell'UA sono riportati nell'Appendice 1). Quanto mostrato in Figura 1 si può applicare anche ai transiti di Mercurio, tuttavia data la maggiore distanza di Mercurio dalla Terra la differenza nella posizione apparente sul disco solare è molto più piccola che nel caso di Venere, il che rende le misure (e quindi le stime dell'UA) meno precise.

Nel XVIII e nel XIX secolo vennero organizzate imponenti campagne internazionali per osservare i transiti di Venere. I più importanti osservatori del mondo inviarono astronomi in località spesso remote, in modo da poter documentare al meglio le varie fasi dei transiti (ad esempio l'osservazione del transito di Venere del 1769 vide all'opera circa 150 astronomi dislocati in almeno 77 diversi punti di osservazione sparsi in ogni angolo della Terra). Si trattò quasi sempre di spedizioni assai avventurose, recarsi in Siberia, in Africa, nel Pacifico o nell'America del Sud (trasportando anche della strumentazione scientifica) fino alla metà del XIX secolo era infatti un'impresa non priva di difficoltà e pericoli. Queste spedizioni furono, nel loro insieme, un grande successo e fornirono un'eccellente valore per l'UA stimata allora in 149.668.465 km (3). L'osservazione dei transiti di Venere fornì anche le prime evidenze della presenza di un'atmosfera attorno al pianeta. Nella seconda metà del XX secolo sono state effettuate delle misure dirette delle distanze dei pianeti più vicini, inviando dei segnali radar su Venere, Marte e Mercurio e misurando il tempo impiegato dai segnali per tornare sulla Terra. Si è così ottenuto il valore attualmente accettato per l'UA: 149.597.870 km.

(2) La terza legge di Keplero afferma che per tutti i pianeti del Sistema Solare il rapporto tra il quadrato del periodo di rivoluzione intorno al Sole e il cubo del semiasse maggiore dell'orbita è una costante. Poichè i periodi di rivoluzione dei pianeti intorno al Sole sono noti, basta misurare la distanza di un pianeta dal Sole per poter ricavare tutte le altre distanze all'interno del Sistema Solare.
(3) La prima misura della distanza di un pianeta (e quindi dell'UA) fu ottenuta durante l'opposizione di Marte del 1672. Cassini e Richer misurarono diversa posizione di Marte rispetto alle stelle usando come base (AB) la distanza tra Parigi e la Guyana Francese (risultati molto simili furono ottenuti indipendentemente da Flamsteed). Le osservazioni di Venere consentirono di migliorare notevolmente la precisione nella stima dell'UA rispetto a quella ottenuta con le misure delle posizioni di Marte.

I transiti e la ricerca dei pianeti extrasolari

Anche se i transiti di Venere non hanno più l'importanza che avevano nei secoli scorsi, restano fenomeni spettacolari e molto rari. Fuori dal Sistema Solare i transiti sono un ottimo metodo per scoprire pianeti in orbita intorno ad altre stelle (i pianeti "extrasolari"). Il passaggio di Venere o Mercurio sul disco del Sole occulta una piccola parte della fotosfera, causando una diminuzione della quantià di luce che arriva sulla Terra.  Variazioni simili possono verificarsi per la luce che ci arriva dalle stelle a causa del transito di pianeti in orbita intorno ad esse (Figura 2). Il "metodo dei transiti" ha già permesso di scoprire pianeti extrasolari con dimensioni simili a quelle della Terra. A causa dei disturbi causati dall'atmosfera, da Terra è possibile misurare solo le variazioni di luminosità (da qualche millesimo a qualche centesimo di magnitudine) causate da pianeti extrasolari con dimensioni simili, o maggiori, a quelle di Giove. Variazioni più piccole (e quindi pianeti più piccoli) possono essere evidenziate solo con misure fuori dall'atmosfera terrestre, ovvero usando dei satelliti artificiali. I satelliti sono in grado di mettere in evidenza variazioni di luminosità dell'ordine di una parte su diecimila, permettendo così di rivelare il transito di pianeti extrasolari simili alla Terra. L'Osservatorio Astrofisico di Catania è impegnato in due di queste importanti missioni spaziali, i satelliti COROT (frutto di una collaborazione internazionale che ha come paese guida la Francia) e Kepler (un satellite della NASA). Sui siti web di questi satelliti sono riportate le loro scoperte più recenti.

Appendice 1 - Abbiamo visto (Figura 1) che se due osservatori (A e B) misurano la posizione di Venere sul disco solare durante un transito vedranno il pianeta percorrere traiettorie diverse. Nel 1716 il grande astronomo inglese E. Halley pubblicò un articolo in cui si descriveva come ricavare la distanza del Sole misurando le posizioni di Venere durante un transito. Il metodo di Halley è molto complesso, ma esiste un metodo analiticamente molto più semplice che qui descriviamo. Affinchè la separazione tra K e Z mostrata in Figura 1 risulti misurabile occorre che gli osservatori A e B si trovino a grande distanza sulla superficie della Terra ma anche in questo caso si tratta, come vedremo, di una misura molto difficile (la differenza nelle posizioni apparenti di Venere mostrata in Figura 1 è notevolmente esagerata).

Per prima cosa proviamo a stimare il rapporto tra la distanza Venere-Sole (VS) e la distanza Terra-Sole (UA). Per far questo osserviamo la Figura 3, dove vengono mostrate le orbite della Terra e di Venere intorno al Sole (per semplicità assumiamo orbite circolari). Quando Venere, vista dalla Terra, si trova in "quadratura" l'angolo Terra-Venere-Sole (b) è di 90°. Se in quell'istante misuriamo l'angolo  a (che risulta di circa 46°), possiamo applicare una semplice relazione che lega i lati e gli angoli di un triangolo rettangolo: VS/UA = sin a = sin 46° = 0.72. Da cui ricaviamo VS = 0.72 · UA

Consideriamo ora la configurazione mostrata in Figura 1 come verrebbe vista da un osservatore posto sul piano dell'orbita della Terra: Figura 4.

Durante un transito avremo: AB/(0.28 UA) = ZK/(0.72 UA) e poichè la distanza AB è nota otteniamo ZK (se AB = 3000 km, ZK = 7714.29 km). Quindi conosciamo adesso la distanza in km tra due punti sulla superficie del Sole e quindi dal rapporto tra le dimensioni apparenti del Sole (PP')  e di ZK  possiamo ricavare il diametro del Sole. Per due punti di osservazione distanti tra loro 3000 km la separazione angolare tra Z e K risulta di circa 0°,00296 (ZK è molto minore di quanto mostrato, per chiarezza, in Figura 4). Poichè PP' ha un valore di 0°,534, ne segue che il diametro del Sole è di circa 1.390.000 km (PP' = 0,534 x 7714,29/0,00296). A questo punto basta calcolare da che distanza dalla Terra un corpo del diametro di 1.390.000 km viene visto con un diametro apparente di 0°,534. Questa distanza è proprio l'UA che, con le approssimazioni usate, risulta UA=149.140.000 km. La difficoltà principale del metodo qui descritto sta nel valutare con grande precisione un angolo dell'ordine di qualche millesimo di grado sul disco solare. Piccoli errori in questa misura portano a grandi errori nella stima dell'UA. Il metodo sviluppato da E. Halley ricava il valore dell'UA dalla differenza di durata del transito di Venere osservato da A e da B. La misura dei tempi del transito può essere effettuata con una precisione assai maggiore rispetto alla misura degli angoli.

L'astronomo inglese E. Halley elaborò un ingegnoso metodo trigonometrico grazie al quale basta misurare i tempi del transito di Venere sul disco solare, ottenuti da almeno due osservatori posti in punti diversi sulla Terra, per ottenere, dopo calcoli molto complessi che qui non riportiamo, il valore dell'Unità Astronomica. In generale per due osservatori posti in località diverse il transito ha durata diversa, ma solo se gli osservatori sono posti a grande distanza la differenza di tempo diventa significativa e facilmente misurabile. Ad esempio il transito di Venere del 2004 ha avuto una durata di 6h 3m 16s a Oslo e di 6h 3m 43s a Catania. Per applicare il metodo di Halley occorre misurare gli istanti dei "contatti", quelli cioè in cui il disco del pianeta "tocca" il disco solare (nella figura a sinistra vengono mostrati il secondo e terzo contatto).  Nel XVIII e XIX secolo vennero organizzate numerose campagne internazionali per l'osservazione dei passaggi di Venere, con l'invio di spedizioni scientifiche in parti spesso sperdute del mondo. L'elaborazione dei dati così ottenuti fu ultimata solo nel 1890 e il valore della distanza Terra-Sole fu stimato in 149.668.465 km. Le misure più recenti, e più precise, forniscono un valore di 149.597.870 km. Come si vede il valore ottenuto con il metodo dei transiti di Venere è prossimo a quello ottenuto con le tecniche più moderne (la differenza è di appena lo 0,047%).

Osservatorio Astrofisico di Catania

Visite e Divulgazione

Ultimo aggiornamento: 12/05/16 19.42